Search results for "Extended Irreversible Thermodynamic"
showing 8 items of 8 documents
Nonlinear extended thermodynamics of a dilute nonviscous gas
2002
This paper deals with further developments of a nonlinear theory for a nonviscous gas in the presence of heat flux, which has been proposed in previous papers, using extended thermodynamics. The fundamental fields used are the density, the velocity, the internal energy density, and the heat flux. Using the Liu procedure, the constitutive theory is built up without approximations and the consistence of the model is showed: it is shown that the model is determined by the choice of three scalar functions which must satisfy a system of partial differential equations, which always has solutions. Different changes of field variables are carried out, using different Legendre transformations, passi…
HEAT FLUX IN SUPERFLUID TRANSITION AND IN TURBULENT HELIUM COUNTERFLOW
Extended thermodynamics of polymers and superfluids
2008
Abstract Polymer solutions and turbulent superfluids have in common the presence of a complex tangle of lines – macromolecules in the former, quantized vortex lines in the latter – which contribute to the internal friction and viscous pressure of the system and make them typical non-Newtonian fluids. Here we briefly review some recent studies on such tangles and their consequences on the dynamics and thermodynamics of the whole system, using the framework of extended irreversible thermodynamics. For polymer solutions, we deal with the coupling of diffusion and viscous pressure and its effects on the stability of the solution and shear-induced phase separation; for superfluids, we focus our …
A Continuum Theory of Superfluid Turbulence based on Extended Thermodynamics
2009
A thermodynamical model of inhomogeneous superfluid turbulence previously formulated is extended in this paper to nonlinear regimes. The theory chooses as fundamental fields the density, the velocity, the energy density, and two extra variables, in order to include the specific properties of the fluid in consideration: the averaged vortex line length per unit volume and a renormalized expression of the heat flux. The relations which constrain the constitutive quantities are deduced from the second principle of thermodynamics using the Liu method of Lagrange multipliers. Using a Legendre transformation, it is shown that the constitutive theory is determined by the choice of only two scalar f…
Extended irreversible thermodynamics of liquid helium II
1993
In this work a macroscopic monofluid theory of liquid helium II, which is based on the extended irreversible thermodynamics, is formulated both in the presence and in the absence of dissipative phenomena. The work is a generalization of previous papers, where the extended thermodynamics of an ideal monoatomic fluid was applied to liquid helium II. It is shown that the behavior of helium II can be described by means of an extended thermodynamic theory where four fields, namely density, temperature, velocity, and heat flux are involved as independent fields. In the presence of dissipative phenomena, constitutive relations for the trace and the deviator of the nonequilibrium stress tensor are …
A monofluid flow mathematical model of liquid helium II based on extended non-equilibrium thermodynamics
1994
The present work is a generalization of a previous analysis which aims at a single-fluid description of the macroscopic behaviour of helium II. A single-fluid model of helium II, with a wider range of temperatures and pressures than the one previously described, is formulated here using the extended thermodynamics of a non-ideal fluid in the absence of dissipation. The model here formulated includes, according to experimental data, the propagation of the two sounds typical of superfluid helium, a relationship between the stress deviator and the square of heat flux and an explanation of the fountain effect.
Relative importance of second-order terms in relativistic dissipative fluid dynamics
2014
[Introduction] In Denicol et al. [Phys. Rev. D 85 , 114047 (2012)], the equations of motion of relativistic dissipative fluid dynamics were derived from the relativistic Boltzmann equation. These equations contain a multitude of terms of second order in the Knudsen number, in the inverse Reynolds number, or their product. Terms of second order in the Knudsen number give rise to nonhyperbolic (and thus acausal) behavior and must be neglected in (numerical) solutions of relativistic dissipative fluid dynamics. The coefficients of the terms which are of the order of the product of Knudsen and inverse Reynolds numbers have been explicitly computed in the above reference, in the limit of a massl…
Extended irreversible thermodynamics of liquid helium II: boundary condition and propagation of fourth sound
2001
Abstract The work deals with further developments of a study previously initiated, in which a macroscopic monofluid model of liquid helium II, based on extended irreversible thermodynamics, has been formulated. The transversal modes are investigated and a boundary condition, suggested in the natural way by their analysis, is formulated; the existence of the fourth sound is demonstrated too. A possible experimental determination of the coefficients appearing in the theory is proposed: it is shown that the model is able to express the velocities and the attenuations of the two sounds in bulk helium II, in accord with the experimental data, using a number of parameters smaller than those intro…